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String-like lattice models and Hecke algebras 

P P Martin 
Department of Mathematics, University of Birmingham, Birmingham B15 2TT, UK 

Received 12 July 1988 

Abstract. We discuss lattice statistical mechanical models with n-dimensional (static 
endpoint) string-like degrees of freedom. In the infinite string tension limit these models 
give representations of Hecke algebras HI ( q ) ,  quotient algebras of which may be used to 
construct Virasoro algebras in the limit k + CO and when q = 4 cosz( n/  r )  ( r  E Z). We give 
the regular representation and well defined representations associated with and containing 
each irreducible representation, including non-unitarisable cases. We use these models to 
obtain a complete set of primitive idempotents, and hence the central idempotents, of the 
generic algebra. 

1. Introduction 

The two-dimensional statistical mechanical models solved by Andrews et a1 (1984), 
and found to have critical exponents coincident with those of conformal field theories 
(Friedan et a1 1984, Huse 1984), may be constructed directly at criticality in terms of 
Temperley-Lieb algebras (Temperley and Lieb 1971, Kuniba et a1 1986). In a recent 
paper (Martin 1987) we showed how the models of Andrews et a1 (1984) can in turn 
be used to find the irreducible representations of such algebras. 

These algebras are expected to be related to the algebra of conformal transforma- 
tions (Kuniba et a1 1986, Belavin et a1 1984, Shultz et al 1964). More generally the 
A,  Hecke algebra H k ( q )  with k generators U, obeying 

uf=G U, 

U , ~ I + ,  U, - U, = U,+, ~ , ~ , + , -  U,+, 
[U , ,  q 1 = 0  l i - j l #  1 

(1) 

with q a scalar parameter (Hoefsmit 1974), is also important in solvable statistical 
mechanical models (Date et a1 1987). The Temperley-Lieb algebra is obtained from 
Hk(q) by imposing the additional relations 

u,u,+, U, - U, = 0. (2)  
The algebras then associated with conformal theories have 

q = 4 cos2( r / r )  r = l , 2 , 3  , . . . .  (3) 

1- [1 / (4-1) l rG(u1+ Ut+,)- U1U,+1- U,+,U,I=O. (4) 

For example, H k ( 2 )  has a quotient algebra obeying 

With V ,  = 1 - 2 U , / G  we then find that the objects 
4j - 1 < 2i + 2  4 j + l < 2 i + 2  

v4j-1+ n v4 j+ l )v2~+2  i > O  
J = o  
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with 
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and cg= v 2 / a  ( 6 7 )  T c-, = c, 

obey fermion anticommutation relations {cl, c,} = al.-, . It is well known how to construct 
representations of the Virasoro algebra with central charge c = from such objects (see 
Belavin et a1 1988). 

Existing statistical mechanical models constructed using the Hecke algebras (see 
Date et al 1987, Pasquier 1988) are of rather uncertain physical content, and are too 
inflexible to describe all representations, while the abstract recipes of Wenzl (1988) 
and Hoefsmit are restricted to unitarisable or generic cases. Here we discuss models 
with n-dimensional static endpoint string-like degrees of freedom which, on restriction 
to the infinite string tension limit, give the irreducible representations of H,(q) in a 
straightforward way. We write down the regular representation and well defined 
representations associated with and containing each irreducible representation, for all 
r. We give a framework for the discussion of more general representations. This 
enables us to exhibit the structure of the generic algebra ( r  E Z) as a direct sum of 
matrix algebras, to write down a set of primitive idempotents, and to give the central 
idempotents of the algebra. Since the transfer matrix, which is a statistical mechanical 
antecedent of the stress-energy tensor (Belavin et al 1988), is written in terms of the 
operators { U j } ,  this analysis is hopefully the precursor to revealing a physically sensible 
action for the Virasoro algebra in the statistical mechanical context. For example, the 
Temperley-Lieb algebra unitarity is that the unique primitive central idempotent of 
H , - , ( q )  vanishes for any r - 2  adjacent operators (i.e. equation (4) in the case q = 2 ) .  

2. The model 

Consider a string in n + 1 Euclidean dimensions which has static endpoints at a = 
( a , ,  a,, . . . , a,) and b = ( b ,  , b,, . . . , b , ) ,  with b - a = a given by ( a , ,  a 2 , .  . . , a,), in 
some rectilinear coordinate system in the first n dimensions (we put a, 5 0 and order 
so that a, > a, i < j without loss of generality). Now replace the n-dimensional 
subspace with an n-dimensional hypercubic lattice. The endpoints sit on sites, so that 
the displacement coordinates a, become integers and the string is replaced by a sequence 
of lattice points, ordered by a discretised arc length rn, with the ‘stringiness’ property 
that the points in and rn + 1 are nearest neighbours. 

The (Euclidean) time direction is also discretised. The configuration space of the 
string at a given instant may then be represented on a ‘forward moving’ path (see 
figure 1) through a two-dimensional square lattice of length equal to the total arc 
length rn, (which will be larger than rn, = a ,  + a,+. . .+a, in general). The two- 
dimensional lattice site variables take values from the possible coordinates of lattice 
sites in the n-dimensional space. As such they are constrained to respect the nearest- 
neighbour condition, which is then enforced for all paths through the 2~ lattice. A 
path adjacent on the right (say). to our original path gives the immediate discretised 
time evolution of the string. There are many distinct forward moving paths on the 2~ 

lattice which could represent the instantaneous string. We will see that these are 
equivalent, since the corresponding distinct transfer matrices (Kogut 1979) for time 
evolution of the string are related by similarity transformations. 



String-like lattice models and  Hecke algebras 3 105 

Figure 1. The forward direction on the two-dimensional lattice. 

What we have done is to pull the world sheet of the string, arbitrarily convoluted 
in n dimensions, flat-but to encode the convolutions in the ZD lattice variables. The 
‘depth’ of the ZD lattice varies depending on the number of steps in the string m,, but 
the nearest-neighbour rule decouples the configuration space of the world sheet into 
sectors of constant depth. To see this consider the possible string configurations 
accessible from a given configuration by the nearest-neighbour rule. 

This means that we can break up  the configuration space into subspaces giving 
successive contributions to a high string tension expansion. Here we will restrict 
attention to the infinite string tension limit, T = W .  The depth of the lattice is then 
fixed at  m, and  we may effectively redefine n so that cy, > 0. In the limit we can also 
associate an  ‘internal’ field with the links of the string (we will consider a scalar field). 
We write y ( i ) ~ R  for the scalar on the link between arc length i - 1  and  i. Thus to 
define an  instantaneous configuration of a string it is necessary to specify the path it 
describes in n-dimensional space and the value of y ( i )  on each link. These values 
may be chosen arbitrarily at each link, but the interactions we will consider below are 
such that configuration space will decouple into regions with a fixed number of links 
carrying any particular scalar value. 

We define a partition function for the Z D  lattice system by 

z = c exp( 1 In( w,k[(/3)) +other interactions ) (8) 

where the argument is a classical Hamiltonian dependent on the configuration of the 
world sheet and  interaction parameters represented generically by p. The plaquette 
weights wj,k/(/3) depend on: (i)  the 2~ lattice site variables x( i ) ,  x ( j ) ,  x ( k )  and x ( 1 )  
(see figure 1) which we have taken to run anticlockwise from the left (the direction of 
earlier time) round the plaquette ijkl to the top (lesser arc length); and (i i)  the associated 
link variables. Each site variable, x( i )  = (x , ,  x2,  . . . , x,,), gives a point on the n -  
dimensional lattice. We will refer to the arc length common to the ith and kth sites 
as the arc length of the plaquette. We may then think of the interaction at arc length 
i as simply associating distinct weights with time evolutions which interchange or d o  
not interchange the n-dimensional string links common to site i. If we restrict attention 
to these plaquette interactions then we may write down a T = 00 transfer matrix T, such 

configurations pldquettes y k l  
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that 2 = ( T N )  where N is the number of time steps and the brackets represent some 
initial and final states of the string. This transfer matrix is 

[m,/21 [ ( m , - 1 ) / 2 1  

T = (  El 2 % 2 t - 1 ) (  El U , , )  = S T ' S - ' = S  (9) 

Here T' represents a different forward-moving path on the lattice with 

(a = 0 , l  for mm even, odd), cf the corner transfer matrix of Baxter (1982). The single 
plaquette transfer matrix is 

(at ),k = ( n ax, ( I ) . X l  YX,( I ) . X t (  I + 1 ).XI. (I I ,=,  ( I - 1 d P  ) (11) 
1 # 1  

where x , ( i )  denotes the position at arc length i of the string in configuration j .  We 
introduce U, by 

m, - ( 1 + I (  P ) U, ) . (12) 
The distinct types of plaquette configuration allowed by the nearest-neighbour rule 

are 

M i ) ,  X W ,  x ( k ) ,  4 1 ) )  
= ( x +  e,, x+e, +e,, x +  e,, x)  

= (x + e,, x + e, + e,, x + eb, x) 

= (x+e,, x +  e, +e,, x +  e,, x)  

with a = b = c 

with a = b # c 

with b = c 

where x is some point on the n-dimensional lattice (in the box 0 s  x,  -a, a, for all 
i = 1, .  . . , n) and e, is the unit vector in the ith direction. In (c l )  and (c2) the link 
variables are unchanged; in (c3) distinct link variables are exchanged between opposing 
links, and/or a # b. Note that the first and second configurations do not involve any 
movement of the string. 

(c l )  
(4 
(c3) 

It is convenient to introduce the notation 

x ' x . = [ x 1 - x , , x 2 - x , , .  . . , x , - I - x , ]  x . ,  = 0 (13) 
and consider the case a, =constant. Here x. is the projection of the string into the 
( n  - 1)-dimensional space orthogonal to the straight line a between the endpoints a 
and b. In this framework the initial and final coordinates are zero, but the x. ,  basis 
is not orthogonal. We note that x,  - x ,  is then the projected distance of the string 
from Q in the e,-e, plane. The kind of lattice system we want to embrace would model 
a continuum action dependent on the area of the world sheet in some region of its 
parameter space. The lattice model could, for example, be weighted to favour the 
small region of configuration space in which the string paths keep close to Q (a  
consequence of string tension in the continuum), while entropy considerations would 
then promote the contributions of more energetically typical paths. 

The weights we use have such ground-state properties for small values of their 
interaction parameters (and n C r - l ) ,  and are of the following form (cf Kuniba et a1 
1986): 

w,, = 1 (14) 
wc2 = [ f 2 ( x  + P r /  df2(  l ) / f 2 ( x l f 2 (  1 - p r /  7711 (15) 

wc3 = W ) [ f ( x +  1lf(x - l)/f2(x)l. (16) 
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where x = x, - Y .  + y (  i )  - y (  i + 1 )  for the plaquette at arc length i. Consider 

f (x )  = [sin”2(x.rr/ r )  exp(-h2 c o s ( x ~ / r ) ) ]  (17) 

l ( P )  = f 2 ( P r / . . ) f - 2 ( 1  - P r l . . )  (18) 

and 

where h and P are the interaction parameters (we will use the notation fo for f l h = o ) .  
Although these weights look complicated they have the merit that they satisfy the 
star-triangle relation (Baxter 1982) at zeroth and first order in h2.  The zeroth-order 
relation implies (cf Kuniba et a1 1986) that the following operators (from (12)) obey 
the Hecke algebra relations: [ ;3x+ l)/fr3x)l in case (c2) at arc length i 

otherwise 
( ui)jk = [ f O ( x +  I)fO(X- l)/f~(x)] in case (c3) (19) 

(cf Hoefsmit 1974). We will not pursue any consequences of the first-order relation 
here, as there remain a number of interesting results to be noted from the zeroth order. 
These are largely technical, but can nonetheless contribute to a physical interpretation 
of the role of Hecke algebras in statistical mechanics. This is because the exercise of 
drawing convincing parallels between the infinite-dimensional limits of various multi- 
matrix algebras, the unitarisable quotients of Hk(q), and the Virasoro algebras (as 
exemplified in the introduction) may be assisted by a knowledge of the full algebraic 
structure which lies behind these quotients. 

For example, with y ( i )  =constant, strings from a = ( a l ,  a 2 , .  . . , a,)  to b = 

y - x; where {a r  E C for all 1 E { 1,  . . . , n } } ,  give rise, after an obvious but noteworthy 
( a , , a ,  , . . . ,  ai+1, . . . ,  aj+l ,  . . . . ,  Uk+1, . . .  )wi thu i -u j=x;Ui -Uk=y;andUj-Uk= 

basis change, to the ‘alternative’ representation 

where X = s ( x + l ) / s ( x ) ,  Y = s ( y + l ) / s ( y ) ,  Z = s ( y - x + l ) / s ( y - x )  and s(x )=  
sin(x.rr/r). These matrices may be seen to satisfy the relations for all x, y ,  (x  - y )  # 0 
on repeated application of the basic trigonometric identities. In general, changes in 
the position of the endpoint a while holding (Y fixed correspond, by continuity, to 
similarity transformations. I f  some (a r  - a , )  -+ nr, E Q for 1, m E i , j ,  k these may be 



3108 P P Martin 

singular when r E Z. The dimensions of the inequivalent representations labelled by 
distinct lattice vectors a such that a, > 0 and ai > aj+j > i is 

- I  

0, = “!( fi (a, !)) . 
i = l  

When q = 4 these correspond to permutation representations (Robinson 1961) of the 
permutation group S ,  (see later). We will refer to them as such for all q. 

An important technical point here is that the representation exemplified by (20) is 
not necessarily isomorphic to the original one (equation (19)) when, for instance, 
X = 0. In such cases the apparent isomorphism class of representations generated by 
varying x (i.e. generated from (19) by moving a )  may break up into various disjoint 
classes. This is a consequence of working with fields which depend on q, which is not 
a problem provided some care is exercised. The alternative representation with a, = 1 
( i =  1, n )  is the regular representation for H n - l ( q ) .  This is not true of the original 
representation (19) in general unless the algebra is semisimple (i.e. r E Z or r E Z > n, 
see later). The non-semisimple cases with n = 3, for example, are H,(O) and H,(1) for 
which the regular representations may then be written as direct sums of indecompos- 
ables as follows 

q = o :  

q = l :  

u1 = 

0 
1 

1 
0 

0 

U2 = 

1 1 1  
0 1  

1 
1 0 1  
1 0 1  
0 0 0  

These are isomorphic to (20) for all x, y but not, for example, to (19) with x = y - x = -$ 
( q = O )  or =-1 ( q = l ) .  

If the field y ( i )  is not constant then, in addition to a being a constant within a 
basis, the vectors a),, which are the sums of vectors associated with links carrying a 
common value of y ( i )  = y ,  are constant. The set {a,; distinct values of y in the field} 
then label the representation (see later). 

In the basis a, = -1 (for all I )  considerable simplification occurs provided r is not 
integer. Firstly, the ‘standard’ subspace of string configurations for which x, + i > x, + j 
implies i < j for all x on the string decouples from the rest (consider equation (19)). 
The resultant representations for Hk(q) when y (  i )  = constant are a complete set of 
irreducibles corresponding to those in Wend (1988). When q = 4 the objects 

(21) t! = 1 -exP(8)U, = ~ I l h = O . / ( @ j = - e x p , B j  
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(exp(@)+exp(-@) = Jq) generate SI+,  (see equation ( l ) ) ,  and  provided r is not integer 
the algebraic structure of H k ( y )  is isomorphic to the S,+, group algebra. Now the 
number of string configurations or ‘walks’ in each basis (labelled by a) can be 
determined as follows. The number of ways of putting n distinguishable steps into a 
(thus numbered) walk of length n is n!. On the other hand for each walk allowed in 
our candidate basis for an  irreducible representation (i.e. with x, + i > x, + j 3  i < j )  we 
can generate some number, say Pa, of distinct numbered walks. First we number the 
steps of the allowed walk. Then we generate new walks by interchanging the first step 
in turn with each other step in the same direction and the first step in each higher 
indexed dimension. Take the set of numbered walks thus produced and generate new 
walks by iterating this procedure. At the nth stage this means permuting the nth 
numbered step with each later numbered step in the same direction and the nth 
numbered step in each higher indexed dimension. Then Pa is the product of the 
numbers of such interchanges at each stage. These in turn are equivalent to hooks on 
a corresponding Young tableau (Hamermesh 1962). The procedure generates all 
numbered walks once so the dimension of the irreducible representation labelled by 
a is n!/P, as required. 

The number of copies of the irreducible associated with a’ (say) in the permutation 
representation a is given by the number of allowed walks over a‘ in which the first 
cy1 steps are in the same direction, the next c y 2  are in the same direction and  so on (by 
continuity with q = 4 and then from Hamermesh (1962)). For example the number of 
copies of the irreducible associated with a itself is 1. 

If r E Z we may still uniquely associate each irreducible with an a. The dimensions 
are less than or equal to the generic dimensions (and possibly zero). Firstly, if 
a ,  -cy, < r - n + 1, then as r is tuned to an integer the subspace of basis configurations 
(within the generic irreducible) with x., = x1 -x, < r for all x decouples from the rest 
and gives a unitary representation (Wenzl 1988). Some matrix elements outside the 
subspace would then be divergent (see equation (19)). As in the Temperley-Lieb case 
these can be controlled by taking r + r + E, and  making certain similarity transformations 
before allowing e + 0 (see Martin (1988) and note, for example, that Tr( U , )  = j& with 
j E Z in any representation); however, unitarity is lost. The representation will then 
be reducible (although indecomposable) in general, like the sub-blocks of the regular 
representation in our example. I n  general the new irreducibles themselves require 
basis changes (as well as restricting to subspaces which are generalisations of those 
discussed in Martin 1988 for the Temperley-Lieb case) before e + 0. Of course the 
permutation representations are already defined for all q, what we have done is to 
show that they contain the appropriate irreducibles. 

When y (  i )  is not constant, r not integer and a, = - I ,  in the standard subspace the 
corresponding representations are continuous with the outer product representations 
of S k + ,  , denoted a,, - a,? - a,, . . . where the product is over all distinct values of y ( i )  
(Robinson 1961). The dimensions are given inductively by 

where /a) 1 is the number of steps in a,, so that ( k  + 1)  =E, la,,l, and PI is the product 
of hook lengths P, with a = a,, . In particular if y ( i )  takes only two distinct values 
( y ,  x )  then we can construct a diagonal to such that 

t i  =f(y - x ) t o + g ( y  - x ) l  
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where f and g are some functions and 

tot, tot ,  = t l  to t ,  to  

and hence give a complete set of irreducibles for the generic B, and D, type Hecke 
algebras (see Hoefsmit 1974). The advantage of the present construction is that if 
a, # - 1  it works perfectly well with the permutation representations for all r. The 
dimensions (although not necessarily the decompositions) are given by continuity and 
the associativity of outer product and direct sum when q =4.  

The interest in the outer product representations arises from the fact that when 
q = 4 they are induced using S,+, 2 S, x S,.  As we will discuss in a subsequent paper, 
this procedure can act for the transfer matrix like a block-spin renormalisation. 

We now construct primitive idempotents. These are of more than just aesthetic 
interest; they enable us to make purely algebraic calculations for the largest eigenvalues 
of the transfer matrix in each irreducible subspace (see, for example, Baxter 1982). 

For each distinct (Y consider the unique string configuration o passing through the 
points 

(0 , .  . a ,  O ) ,  (0,. . ., 0,  an), (0 , .  . . ,  0, a n - 1 ,  an), * * * 5 (0 ,  a 2 9  * * * 9 a n ) ,  ( a , , .  . ., a n )  

and associate with this configuration the idempotent 

(22) a,,+" ,,_, + I  . . . E  +...+ a2+1 "Eo = E ~ , ~ - , ~ ~ ~ ~ ~ , ' - I E a , , - ~ - ,  a;-1 

where E! is constructed in the same way as the idempotent defined in Martin (1988) 
(for the Temperley-Lieb algebra) as Idem(b-l,,2[c+ 13. Namely, E,b = 1, 

EL= E ~ - , ( ~ - K , U ~ ) E ~ - ,  

where I/K, = 4- K, - ,  with K ,  = 1 / 4 ,  i.e. 

K ,  = sin( c r /  r)/sin( ( c  + l ) r /  r )  

and E: = EL ( Ui + Vi+,-, for all i ) ,  so that E: = 1 - q - ' / 2  U),, and so on. The idempotent 
has analogous properties in the Hecke case, i.e. 

UiE!=O if b s i < b + c .  

The proof of this, and of idempotency, is by straightforward induction using the Hecke 
relations and the definition of K,. Returning to (22), for example if ai = 1 ( i  = 1, .  . . , n )  
then "Eo = 1. Note that in general the structure of this idempotent is a product of the 
idempotents associated with the trivial representations in various commuting subalge- 
bras. In what follows this simply reaffirms the analogy with permutation representations 
of the permutation group (cf Robinson 1961). 

Now further associate with each configuration t an operator L, obtained from 
E,( = Lo) by repeated use of 

where configurations t and s differ only in the ith position and these positions differ 
in only the j th  and kth coordinates with 

y = (x, ( i  - - x, ( i  - 
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and x , ( i ) ,  = x , ( i  - l) ,  + 1 if  j < k (this latter defines a partial order on configurations 
with o the unique lowest). Every L depends on a and  b, but Eo = Lo depends only on  
b - a = a. Note that if t is of the form 

. . . , x, ( i  - 1 ) = x, x, ( i )  = x + ear x, ( i  + 1 )  = x + 2e,, . . . 
then U,L,  = 0. The proof is straightforward. 

the unique final configuration, passing through the points 
The left ideal generated from Eo thus terminates with the element L, where f is 

(0,. . . , O ) ,  ( a , ,  0 , .  . . I O ) ,  ( a ,  1 a,,() , .  . f 101,. . . , (ai,. . . , a n - , ,  01, ( a i , .  . . , a,) 

Note that in general such an ideal is well defined for all r. 
It is possible to choose a such that some of the operators are not defined. However 

(defining R, = LT where T means writing the operators in reverse order) the operator 
E l -  = k l - L , ~ R I ~ ~ ,  where k p  is just some a-dependent normalisation and I "  is the unique 
lowest configuration for a given a for which x, - a ,  > x, - a, implies i < j for all x on 
the string, is well defined when a ,  = -1, for all r Z, and for all r provided a I  -a ,  < 
r - n + 1 .  We now restrict ourselves to this basis. 

We find E l - E l r = 6 , , , E l ~ ~  (see later). Given this it is easy to prove that for s, t 
higher than or  equal to I " ,  I' respectively (i.e. obtained from them in the sense of 
(23)) we have 

R , L ,  = 6,3,E1m. (24) 

A complete set of primitive idempotents are thus I ,  = L,R, for each s obtained from 
each I " ,  and the minimal central idempotents are 

c, = c L , R ,  
configurations 

obtained from I "  : c 

for each a. 

where 
The crucial properties of E / -  come from the fact that it takes the form F,L,R,F, 

r is the unique highest walk for which x, - a ,  > x, - a ,  implies i > j for all x on the 
string and  F :  is obtained by making the replacement U, -4- U, for all U, in E !  (so 
U , F f  = fi F: if b S i < b + c). The first few of these are 

With four operators, for example, the { E l < , }  are then (up  to normalisation): 

Ly = (5 ) :  E.: 

a = ( 3 , 2 ) :  F ;  F: U,  E ; E :  U, F:  F ;  

= (4,111 F ;  E : F ;  

a = ( 3 , i ,  1 ) :  F : E : F :  = ( 2 , 2 , 1 ) :  F : F : U 3 E : E : U 3 F : F i  

a = ( 1 ,  1 ,  1 ,  1 ,  1 ) :  F:.  = ( 2 , i ,  1 , i ) :  F:E:F:  

Note that this construction is not equivalent to that of Wenzl (1988). There is no 
unique minimal word set in terms of generators { U , }  or {f,} for H k ( q )  (consider ( l ) ) ,  
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so the two approaches give complementary expressions for the same set of idempotents. 
In fact neither set is ideally built to exhibit the q dependence of central idempotents. 
Work in this area continues. A central idempotent will often be defined at q values 
for which the basis dependent primitive idempotents are not. This could suggest 
suitable bases for the non-unitarisable irreducibles. 
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